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Abstract
Much of the recent commentary on p-values has been negative with

some journals and societies taking strong stands against their use. They
are even blamed for the reproducibility crisis in some fields of applied
statistics. Some of this may be due to misunderstanding of what p-
values are. We consider a very simple example for which we can do
various calculations exactly and use the results of these calculations to
gain insight into the properties of p-values. These insights then help
clarify the nature and interpretation of p-values.

Introduction
Suppose that y = (y1, . . . , yn)T are independent and identically
distributed nonnegative random variables that we model as ex-
ponential with rate parameter θ and, for some θ0 > 0, we want
to test H0 : θ = θ0 against HA : θ < θ0.

Let Gn be the distribution function of 2θnȳ = 2θ
∑n
i=1 yi ∼

χ2
2n. A level α Neyman-Pearson test of H0 has rejection region

{y : 2θ0nȳ ≥ G−1
n (1− α)} = {y : 1−Gn(2θ0nȳ) ≤ α}

and the p-value is

p(ȳ, θ0, n) = 1−Gn(2θ0nȳ).

We can interpret the p-value as
• the probability under H0 of observing a value of the test statis-

tic (ȳ) at least as extreme as that actually observed
• a test statistic (a convenient transformation of ȳ) defined on

[0, 1] such that small values are evidence against H0.
As noted by Kuffner and Walker (2019), the second interpreta-
tion (a test statistic) makes it more more clear than the first (a
probability) that p-values are random.

Distribution of p-values
Let Hn(·, θ) be the actual distribution function of 2θnȳ and
hn(y, θ) = H ′n(y, θ) be the density of Hn. Write θ = ρθ0 with
0 < ρ ≤ 1. Then, for 0 ≤ u ≤ 1, the distribution function of the
p-value is

K(u; ρ, n) = Pr{y : 1−Gn(2θ0nȳ) ≤ u|θ}
= Pr{y : 2θnȳ ≥ ρG−1

n (1− u)|θ}
= 1−Hn{ρG−1

n (1− u), θ},
the quantile function is

K−1(u; ρ, n) = 1−Gn{ρ−1H−1
n (1− u, θ)}

and the density function is

k(u; ρ, n) =
ρhn{ρG−1

n (1− u), θ}
gn{G−1

n (1− u)}
.

When the model is correct, Hn(y, θ) = Gn(y). Under H0,
ρ = 1 and, as is well-known, the p-value has a uniform distribu-
tion for all n. Under HA, ρ < 1, the p-value distribution depends
on n and, as shown in Figure 1, places more probability in the
lower tail.
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Figure 1: Density, distribution, quantile and detrended quantile functions of
p-values when ρ = 1 (blue), 0.975, 0.95, 0.925, 0.90, 0.875, 0.85, 0.825, 0.80,
0.775 (green) and n = 10. The buff strip corresponds to the rejection region
for a level α = 0.1 test. Detrending rotates the quantile function through 45◦.

The power of the test (probability of rejecting H0) is

power(α, n, ρ) = K(α; ρ, n) = 1−Hn{ρG−1
2n (1− α), θ}

For ρ = 1, power(α, n, 1) = α for all n and α. Decreasing ρ and
increasing α and/or n all increase the power; see Figure 2.
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Figure 2: Power of the test when (i) α = 0.05 (blue), 0.1, 0.15, 0.2, 0.25, 0.3
(green) and n = 10 and (ii) α = 0.05 and n = 10 (blue), 20, 30, 40, 50, 60
(green). Increasing α and/or n increases the power.

Inflating the level of the test
Inflating the level of a test increases the probability of finding ef-
fects both when there are none (type I error) and when they are
present. The level can be inflated when H0 is true if Hn 6= Gn
and the distribution of the p-value puts more weight in the lower
tail. This can occur if we use a poor approximation to compute
the p-value, assume the wrong model or represent the analysis
process incorrectly (e.g. ignore selection).

Incorrect model 1: If the true distribution is gamma(κ, λ), then
2λnȳ ∼ gamma(2nκ/2, 1/2) ∼ χ2

2nκ and hence

2θnȳ =
θ

λ
2λnȳ ∼ θ

λ
χ2

2nκ.

The meaning of the null hypothesis H0 depends on how we iden-
tify θ. We can make different choices:
1. If we identify the rate as the reciprocal of the mean (because

the p-value is derived from 1/ȳ), we have θ = λ/κ so

2θnȳ ∼ 1

κ
χ2

2nκ

and Hn(y; θ) = Gnκ(κy). Under H0, we have λ = κθ0.
2. If we identify the rate as the reciprocal of the scale (because

the rate is defined this way in the exponential distribution)
and measure the scale by the standard deviation, we have
θ = λ/κ1/2 so

2θnȳ ∼ 1

κ1/2
χ2

2nκ

and Hn(y; θ) = Gnκ(κ1/2y). Under H0, we have λ = κ1/2θ0.
3. If we identify the rate as the rate parameter of the gamma dis-

tribution, we have θ = λ so Hn(y; θ) = Gnκ(y). Under H0,
we have λ = θ0.

The three cases are shown in Figure 3.
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Figure 3: Detrended quantile functions of the p-value distribution under H0

when the true distribution is gamma(κ, λ) with κ = 0.6 (blue), 0.7, 0.8, 0.9,
1.0, 1.2, 1.3, 1.4 (green) for n = 10. The rate θ is taken to be 1/mean, 1/sdev,
and λ. For (i), large κ is conservative but small kappa increases α slightly;
for (ii) and (iii), small κ is conservative but large κ increases α considerably.

Incorrect model 2: For a second example consider the ε mixture
distribution

(1− ε) exponential(η) + ε contamination(µc, σ
2
c)

which has moments

µ =
1

η
+ ε
(
µc −

1

η

)
σ2 =

1

η2
+ ε
(
σ2
c −

1

η2

)
+ ε(1− ε)

(
µc −

1

η

)2
.

The exact distribution of the sample mean is now not
known so we use the lognormal approximation log(ȳ) ∼
N
(

log(µ), σ2/nµ2
)

under which the distribution function of
T = 2θnȳ is

Hn(y; θ) = Pr(2θnȳ ≤ y) = Φ
{µn1/2

σ
log
( y

2θµn

)}
.

To make the approximate distribution under H0 exactly uniform,
we compute the p-value using the log-normal approximation
1 − Gn(2θ0nȳ) ≈ 1 − Φ{n1/2 log(θ0ȳ)}. The results depend
on whether we identify θ with 1/µ, 1/σ or η respectively.
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Figure 4: Detrended quantile functions of the p-value distribution under H0

when the true distribution is an ε-mixture of an exponential(η) distribution
and a distribution with mean µc and variance σ2c with ε = 0 (blue), 0.05, 0.1,
0.15, 0.2, 0.25, 0.3, 0.35, 0.4 (green) for n = 10. The rate θ is taken to be
1/mean, 1/sdev, and η. For (i) and (iii), large ε increases α; for (ii), small ε is
conservative but large ε increases α considerably.

Ignoring selection: Suppose we do m independent studies and
then use the smallest p-value. The distribution function of the
p-value is

Km(u;ρ,n) = Pr{y : min
j≤m

pj ≤ u|θ}

= 1−
m∏
j=1

Hnj{ρG
−1
nj (1− u), θ}.

If H0 holds and the model is correct, Hnj = Gnj, we have

Km(u; 1,n) = 1− (1− u)m,

the distribution function of the beta(m, 1) distribution.

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

6
−

0.
2

0.
2

u

K
−

1 (u
; ρ

=
1,

 n
)−

u

Figure 5: Quantile function of the p-value distribution under H0 when the p-
value is the smallest from m = 1 (blue), 2, 3, 4, 5, 6, 7, 8 (light blue) p-values
for all n. Increasing m increases α.

Accumulation of evidence
The test should be recast from testing
•H0 : θ = θ0 against H0 : θ < θ0 using n independent observa-

tions (which sounds reasonable) to
• testing H0 : k(u) = 1 against H0 : k(u) = k(u; ρ, n),

0 < ρ < 1, for which using a single observation p(ȳ, θ0, n)
is obviously less reasonable.

We need to replicate studies, i.e. try to get p-values pj from
j = 1, . . . ,m independent replicate studies. A set of simulated
independent p-values is shown in Table 1.

0.332 (10) 0.381 (5) 0.412 (20) 0.576 (10) 0.581 (12)
0.028 (8) 0.033 (20) 0.081(15) 0.101 (10) 0.447 (15)
0.012 (20) 0.041 (15) 0.165 (12) 0.347 (15) 0.555 (20)

Table 1: Simulated p-values from m = 15 independent studies with ρ = 0.8.
The sample sizes are in brackets after each p-value and significant results are
higlighted in blue.

There are many ways to combine the p-values. Fisher (1925)
suggested using

−2

m∑
j=1

log(pj) ∼ χ2
2m under H0.

Fisher’s statistic gives p-values of 0.619, 0.031 and 0.003 for the
firstm = 5, 10 and 15 p-values from Table 1 respectively. Graph-
ical methods are usually more informative so we suggest using
a detrended uniform QQ-plot of the m p-values. To aid interpre-
tation, we include pointwise upper and lower bounds in the plot.
Since the kth uniform order statistic has a beta(k,m + 1 − k)
distribution, we use the detrended 0.975 and 0.025 quantiles of
this distribution as pointwise limits under H0. Plots for the first
m = 5, 10 and 15 p-values are shown in Figure 6.

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

Uniform quantiles

O
rd

er
ed

 p
−

va
lu

es

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

Uniform quantiles

O
rd

er
ed

 p
−

va
lu

es

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

Uniform quantiles

O
rd

er
ed

 p
−

va
lu

es

Figure 6: Detrended uniform QQ-plots of the p-values shown in Table 1
from the first m = 5, 10 and 15 independent studies.

The departure from uniformity is clear in all three figures (c.f.
Fisher’s combined p-value). In this example, it is less the lack of
small p-values than the fact that there are not enough large ones
that means the uniform distribution does not hold!

Conclusions
•A p-value is a statistic with a sampling distribution.
• The information about H0 is in the sampling distribution of

the p-value, not the value itself.
•A Neyman-Pearson test reaches a decision with m = 1, but

we can make more sound inferences by exploring the sam-
pling distribution of p-values.
• To explore a distribution, we need independent replicate ob-

servations (in this case, p-values).
• It is easy for things to go wrong (e.g. assume incorrect distri-

bution, ignore p-hacking) and then make incorrect inferences.
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