Cross validation of pasture biomass predictions from handheld NDVI sensor measures

Angela Anderson^A, Nicole Spiegel^A, Heather Jonsson^B, Bob Shepherd^A ^AQueensland Department of Agriculture and Fisheries; ^BDalrymple Landcare Committee angela.anderson@daf.qld.gov.au

Introduction

- Visual pasture estimates are critical in helping graziers match stocking rates with forage supply. However, they are subject to operator bias¹.
- Normalised Differential Vegetation Index (NDVI) sensors offer an objective method for assessing pasture yield. Pasture reflects near infrared (NIR) and absorbs red light. NDVI =
- This paper develops prediction equations for actual green biomass from NDVI values, then cross validates them to asses whether the handheld NDVI sensor would be a suitable option for predicting green biomass of mixed pastures in northern Queensland.

Data description

- Pasture measurements were recorded for 191 quadrats of mixed pasture types over 12 months (Wet & Dry seasons), on two properties in the Burdekin grazing region in North Queensland.
- Initial pasture measures included: visual estimate green biomass, height, NDVI using a Trimble GreenSeeker^R (Figures 1 & 2).
- Quadrats were then cut and dried to calculate actual pasture measures (e.g. green biomass, protein).

Figure 1. Visual estimation

Figure 2. Hand-held NDVI sensor

Statistical methods

- Predicted actual green biomass from NDVI and NDVI x pasture height (NDVI_Ht) for Wet and Dry seasons.
- Prediction models were obtained by choosing the optimal significant linear and curvilinear regression.
- Cross validated these best models via:

Independent data set > k-fold

(Dry season only) (Wet season only)

- divide data into k random groups,
- fit the model format to k-1 groups, validate on the remaining group;
- repeat k times so every group is in the validation group exactly once
- n-fold (leave-1-out) (Wet season only)
 - as for k-fold with k=n
- Main assessment measures:
 - Root mean square error (RMSE) to quantify the error of prediction (on the original scale of the data – kg/ha)
 - Mean absolute error (MAE%) to asses % error

Results

- Green biomass ranged from 10 2,776 kg/ha and NDVI readings from 0.15 to 0.58, providing a good distribution of data points for predictions.
- A mix of linear and curvilinear models were appropriate (Table 1, Figure 3).
- RMSE and MAE for each validation are shown in Table 2.

Table 1. Prediction models

S	eason	Equation	n	р	adj R ²
	Wet	$log_eGB^\# = 7.9 - 0.14 \times (0.13)^{log_eNDVI}$	137	<0.001	66.7
		log_e GB = 7.4 – 3.8 x (0.77) NDVI_Ht	137	<0.001	68.8
	Dry	log_e GB = 13.7 + 5.3 x log_e NDVI	54	<0.001	49.5
		log_e GB = 8.4 - 5.2 x (0.90) ^{NDVI} _Ht	54	<0.001	29.1

GB = Green Biomass

Figure 3. Fitted curve for *log_e*Green Biomass (Wet season)

Table 2. Cross validation results (RMSE kg/ha, MAE %)

	Wet				Dry		
	k-fold (k=5)		n-fold		Independent data		
Measure	RMSE	MAE	RMSE	MAE	RMSE	MAE	
NDVI	505	7.6	509	7.5	742	13.4	
NDVI_Ht	456	7.2	461	7.2	464	12.3	

Conclusions

- Prediction error for NDVI was large, especially in Dry too large for practical use
- Height improved predictions of green biomass in the Wet and Dry (although, Dry model was poor).
- There was minimal difference in results between the kfold and n-fold validation methods.
- Improving predictions using a model sensor that enables the calculation of a modified NDVI index² needs to be investigated.

References

- 1 Spiegel N., O'Reagain P., Anderson A., Willis M. (2015) Estimating pasture yield: More than meets the eye?
- Proceedings of the Australian Rangeland Society Biennial Conference, Alice Springs.

 2 Trotter M.G., Lamb D.W., Donald G.E. and Schneider D.A. (2010) Evaluating an active optical sensor for quantifying and mapping green herbage mass and growth in a perennial grass pasture. Crop & Pasture Science 61 389-398.

